

ENERO02PI-RT

Introduction

The ENER314-RT add-on board can be used to Control devices and monitor devices requiring 433 MHz ISIM band control directly from a Raspberry Pi equipped with the radio transceiver PCB which incorporates a radio receiver and a transmitter. All major RF communication parameters are programmable and most of them can be dynamically set. The ENER314-RT is fitted with a Multi-band transmitter module capable of FSK, GFSK, MSK, GMSK and OOK modulation. The ENER314-RT offers the unique advantage of programmable narrow-band and wide-band communication modes The ENER314-RT is optimized for low power consumption while offering high RF output power and channelized operation.

The unit will include the ENER314-RT board and 2 ENER002 radio controlled sockets. Users will be able to download the bcm libraries required and software from our website:

www.energenie4u.co.uk

The add-on board connects to the row of pins called the GPIO which can be controlled as either input or output lines under your software control.

Installing the Board

Figure 1 (Raspberry Pi B+ with RF Transceiver Board)

Install the board on to the row of pins as show in the picture and connect your Raspberry-Pi as normal to a monitor, mouse, keyboard and USB power supply.

Note: The RF transmitter add-on board must be connected securely first before powering on the R-Pi. Connecting after the R-Pi is on may result in the device freezing.

The pin header connects to the add-on board as follows to allow you to control the GPIO lines as outputs to drive the radio frequency transmitter.

Pin Header Rev 2.0 view from top

	3V3	1	2
I2CO-SDA	GPIO2	3	4
I2C_SCL	GPIO3	5	6
GPCLK0	GPIO4	7	8
	Ground	9	10
	GPIO17	11	12
	GPIO27	13	14
	GPIO22	15	16
	3V3	17	18
SPI_MOSI	GPIO10	19	20
SPIO_MISO	GPIO9	21	22
SPIO_SCLK	GPIO11	23	24
	Ground	25	26

Figure 2 (GPIO pin header)

The board will communicate with the ENER002 radio controlled sockets using each board transmits a frame of information using On-Off-Keying (OOK) which is a basic form of Amplitude Shift Keying (ASK). This frame includes source address (20 bits) and control data (4 bits).

Here are the pairs of codes using D0-D3 signals that can be sent to control sockets.

D3	D2	D1	D0	Meaning	D3	D2	D1	D0	Meaning
1	0	1	1	All on	0	0	1	1	All off
1	1	1	1	socket 1 on	0	1	1	1	socket 1 off
1	1	1	0	socket 2 on	0	1	1	0	socket 2 off
1	1	0	1	socket 3 on	0	1	0	1	socket 3 off
1	1	0	0	socket 4 on	0	1	0	0	socket 4 off

An ENERO02 will be able to be paired with up to 2 of the control code. Pairs are indicated on the table above. The receivers within the ENERO02 have 4 address slots and the above codes are the combinations to control them.

The software package on our website contains the bcm libraries vital for functioning with the GPIO pins on the Raspberry Pi. bcm 2835 is a C library for Raspberry Pi (RPi). It provides access to GPIO and other IO functions on the Broadcom BCM 2835 chip, allowing access to the GPIO pins on the 26 pin IDE plug on the RPi board so you can control and interface with various external devices. It provides functions for reading digital inputs and setting digital outputs, using SPI and I2C, and for accessing the system timers.

Setting up the sockets

The socket needs pairing with the Raspberry Pi. Hold down the green power button on the adapter housing for 6 seconds until the red LED light on the socket begins to flash at 1 second intervals. The socket has now entered learning mode. The next section describes how to initiate the program. The program has transmit the control codes for the sockets to pair with the Raspberry Pi. The red LED lamp on the adapter will stop flashing and turn off. The adapter is has now paired with the selected button pair on the Raspberry Pi which can now be used to switch power to the socket part on or off.

The ALL on/off button can be used to switch all paired adapters on or off at one time.

Pressing the ON or OFF button on the adapter housing will also cause the socket power supply to toggle on and off.

Setting up Raspberry Pi

To set up the Raspberry Pi for the first time before running the software please download the software package found on our website. Copy all the files unto the Raspberry Pi. Install bcm2835 drivers if not already installed. To do this open the LXTerminal application found on the raspberry Pi desktop. Enter into bcm2835 directory. Once in the directory type the following command: tar zxvf bcm2835-1.37.tar.gz. This will unzip the folder. Then type cd bcm2835-1.37.ten Type the following commands.

The bcm libraries have now been installed. Now exit the bcm directory using ${\tt cd}$. Enter into the 'HopeRF_TRX' directory. Then type the following commands:

```
make
chmod +x hoperf_trx
sudo ./hoperf trx
```

This will initiate the program. Press Ctrl+C to exit the program. The sockets can now be paired with the Raspberry Pi. The first socket with Socket 1 pair and second socket with socket 2 Pair.